首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of V8C7–Cr3C2 nanocomposite via a novel in-situ precursor method
Affiliation:1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;2. Zhengzhou University of Aeronautics, Zhengzhou 450015, China;1. BAM Federal Institute for Materials Research and Testing, DE-12200 Berlin, Germany;2. Niobelcon BVBA, BE-2970 Schilde, Belgium
Abstract:V8C7–Cr3C2 nanocomposite has been synthesized by a novel in-situ precursor method, and the raw materials are ammonium vanadate (NH4VO3), ammonium dichromate ((NH4)2Cr2O7) and glucose (C6H12O6). The products were characterized by thermogravimetric and differential scanning calorimetry (TG-DSC), X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The results show that V8C7–Cr3C2 nanocomposite with an average crystallite size of 31.5 nm can be synthesized at 900 °C for 1 h. The powders show good dispersion and are mainly composed of spherical or nearly spherical particles with a mean diameter of about 100 nm. The weight loss ratio of the precursor throughout the reaction process reaches 70 wt.%, and it changes rapidly before 400 °C (about 35 wt.%). Four endothermic peaks and three exothermic peaks occur during the reaction. The surface of the specimen is mainly composed of V, Cr, C and O four elements. The synthesis temperature of V8C7–Cr3C2 nanocomposite by the method (900 °C) is 500 °C lower than that of the conventional method (1400 °C).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号