首页 | 本学科首页   官方微博 | 高级检索  
     


Classification of vertebral column disorders and lumbar discs disease using attribute weighting algorithm with mean shift clustering
Affiliation:1. Education Faculty, Amasya University, Amasya, Turkey;2. Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Abant Izzet Baysal University, 14280 Bolu, Turkey;3. Technology Faculty, Department of Electrical and Electronics, Selcuk University, Konya, Turkey;1. University of Cassino and Southern Lazio, Department of Electrical and Information Engineering, Cassino, FR, Italy;2. University of Salerno, Department of Industrial Engineering, Fisciano, SA, Italy;3. University of Sannio, Department of Engineering, Benevento, BN, Italy;1. CEIT and University of Navarra, Donostia – San Sebastián, Spain;2. CAF, Construcciones y Auxiliar de Ferrocarriles, Beasain, Guipuzcoa, Spain;1. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian 363000, PR China;2. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, PR China;3. Lab of Granular Computing, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
Abstract:In this article, a new data pre-processing method has been suggested to detect and classify vertebral column disorders and lumbar disc diseases with a high accuracy level. The suggested pre-processing method is called the Mean Shift Clustering-Based Attribute Weighting (MSCBAW) and is based primarily on mean shift clustering algorithm finding the number of the sets automatically. In this study, we have used two different datasets including lumbar disc diseases (with two classes-our database) and vertebral column disorders datasets (with two or three classes) taken from UCI (University of California at Irvine) machine learning database to test the proposed approach. The MSCBAW method is working as follows: first of all, the centres of the sets automatically for each characteristics in dataset by using the mean shift clustering algorithm are computed. And then, the mean values of each property in dataset are calculated. The weighted datasets by multiplying these mean values by each property value in the dataset that have been obtained by dividing the above mentioned mean values by the centres of the sets belonging to the relevant property are achieved. After the data weighting stage, three different classification algorithms that included the k-NN (k-Nearest Neighbour), RBF–NN (Radial Basis Function–Neural Network) and SVM (Support Vector Machine) classifying algorithms have been used to classify the datasets. In the classification of vertebral column disorders dataset with two classes (normal or abnormal), while the obtained classification accuracies and kappa values were 78.70% ± 0.455 (the classification accuracy ± standard deviation), 81.93% ± 0.899, and 80.32% ± 0.56 using SVM, k-NN (for k = 1), and RBF–NN classifiers, respectively, the combinations of MSCBAW and SVM, k-NN (for k = 1), and RBF–NN classifiers were obtained 99.03% ± 0.977, 99.67% ± 0.992, and 99.35% ± 0.9852, respectively. In the classification of second dataset named vertebral column disorders dataset with three classes (Normal, Disk Hernia, and Spondylolisthesis), while the obtained classification accuracies and kappa values were 74.51% ± 0.581, 78.70% ± 0.659, and 83.22% ± 0.728 using SVM, k-NN (for k = 1), and RBF–NN classifiers, respectively, the combinations of MSCBAW and SVM, k-NN (for k = 1), and RBF–NN classifiers were obtained 99.35% ± 0.989, 96.77% ± 0.948, and 99.67% ± 0.994, respectively. As for the lumbar disc dataset, while the obtained classification accuracies and kappa values were 94.54% ± 0.974, 94.54% ± 0.877, and 93.45% ± 0.856 using SVM, k-NN (for k = 1), and RBF–NN classifiers, respectively, the combinations of MSCBAW and SVM, k-NN (for k = 1), and RBF–NN classifiers were obtained 100% ± 1.00, 99.63% ± 0.991, and 99.63% ± 0.991, respectively. The best hybrid models in the classification of vertebral column disorders dataset with two classes, vertebral column disorders dataset with three classes, and lumbar disc dataset were the combination of MSCBAW and k-NN classifier, the combination of MSCBAW and RBF–NN classifier, and the combination of MSCBAW and SVM classifier, respectively.
Keywords:Mean shift-based clustering  Mean Shift Clustering-Based Attribute Weighting  Data pre-processing  Vertebral column disorders  Lumbar discs disease
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号