首页 | 本学科首页   官方微博 | 高级检索  
     


Virtual simulation system with path-following control for lunar rovers moving on rough terrain
Authors:GAO Haibo  DENG Zongquan  DING Liang  WANG Mengyu
Affiliation:State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001,China;School of Mechatronics, Harbin Institute of Technology, Harbin 150001,China
Abstract:Virtual simulation technology is of great importance for the teleoperation of lunar rovers during the exploration phase,as well as the design of locomotion systems,performance evaluation,and control strategy verification during the R&D phase.The currently used simulation methods for lunar rovers have several disadvantages such as poor fidelity for wheel-soil interaction mechanics,difficulty in simulating rough terrains,and high complexity making it difficult to realize mobility control in simulation systems.This paper presents an approach for the construction of a virtual simulation system that integrates the features of 3D modeling,wheel-soil interaction mechanics,dynamics analysis,mobility control,and visualization for lunar rovers.Wheel-soil interaction experiments are carried out to test the forces and moments acted on a lunar rover’s wheel by the soil with a vertical load of 80 N and slip ratios of 0,0.03,0.05,0.1,0.2,0.3,0.4,and 0.6.The experimental results are referenced in order to set the parameters’ values for the PAC2002 tire model of the ADAMS/Tire module.In addition,the rough lunar terrain is simulated with 3DS Max software after analyzing its characteristics,and a data-transfer program is developed with Matlab to simulate the 3D reappearance of a lunar environment in ADAMS.The 3D model of a lunar rover is developed by using Pro/E software and is then imported into ADAMS.Finally,a virtual simulation system for lunar rovers is developed.A path-following control strategy based on slip compensation for a six-wheeled lunar rover prototype is researched.The controller is implemented by using Matlab/Simulink to carry out joint simulations with ADAMS.The designed virtual lunar rover could follow the planned path on a rough terrain.This paper can also provide a reference scheme for virtual simulation and performance analysis of rovers moving on rough lunar terrains.
Keywords:lunar rover  comprehensive simulation system  rough terrain  wheel-soil interaction mechanics  path-following control
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号