首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash
Authors:Nathan Schwarz  Hieu Cam  Narayanan Neithalath  
Affiliation:

aDepartment of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States

Abstract:A detailed investigation carried out to ascertain the durability characteristics of fine glass powder modified concretes is reported in this paper. Tests were designed to facilitate comparisons between concretes modified with either glass powder or fly ash at the same cement replacement level. The optimal replacement level of cement by glass powder is determined from strength and hydration tests as 10%. The later age compressive strengths of glass powder and fly ash modified concretes are seen to differ by only 5%. The durability characteristics are ascertained using tests for rapid chloride permeability, alkali–silica reactivity, and moisture transport parameters. The chloride penetrability values indicate some amount of pore refinement. The potential of glass powder to reduce the expansion due to alkali–silica reaction is established from tests conducted in accordance with ASTM C 1260, but fly ash is found to perform better at similar replacement levels. Glass powder–fly ash blends that make up a 20% cement replacement level are found to be as efficient as 20% fly ash in reducing expansion. The control concrete is seen to exhibit the lowest overall moisture intake after 14 days of curing, and fly ash concrete the highest, with the glass powder concrete in between. The trend is reversed at later ages, demonstrating that both the replacement materials contribute to improved durability characteristics. The sorptivity and moisture diffusion coefficient values calculated from the moisture intake-time data also demonstrate a similar trend. These studies show that fine glass powder has the potential to improve the durability of concretes.
Keywords:Glass powder  Fly ash  Hydration  Durability  Alkali–silica reaction  Moisture transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号