首页 | 本学科首页   官方微博 | 高级检索  
     

磁悬浮陀螺飞轮用隐式洛伦兹力磁轴承
引用本文:刘强,赵勇,代峰燕,任元,王卫杰. 磁悬浮陀螺飞轮用隐式洛伦兹力磁轴承[J]. 光学精密工程, 2018, 26(2): 399-409. DOI: 10.3788/OPE.20182602.0399
作者姓名:刘强  赵勇  代峰燕  任元  王卫杰
作者单位:1. 北京石油化工学院 精密电磁装备与先进测量技术研究所, 北京 102617;2. 北京石油化工学院 磁悬浮轴承研发与精密制造中心, 北京 102617;3. 装备学院 航天装备系, 北京 101416
基金项目:国家自然科学基金资助项目(No.51405022,No.51605489)
摘    要:针对磁悬浮陀螺飞轮用显式洛伦兹力磁轴承气隙磁密均匀性差的问题,提出了一种磁钢内置的隐式洛伦兹力磁轴承,并采用三维有限元法对两种方案的气隙磁密进行比较分析。隐式方案的气隙磁密在周向和纵向的变化率分别为0.8%和8.4%,远优于显式方案的15.0%和23.7%。利用磁场分割法对隐式方案的磁阻进行了区域分割,采用积分法精确计算各区域磁阻,建立了磁轴承磁路数学模型,得到了影响偏转电流刚度的关键结构参数,并基于有限元法对隐式方案形状及结构参数进行详细优化。结果表明,在不恶化气隙磁密变化率的前提下,优化前后绕组区域的最大磁密和最小磁密分别从0.404T和0.368T增加至0.464T和0.427T,增幅为14.6%和16.0%。根据优化结果研制了一台隐式洛伦兹力磁轴承,并进行了气隙磁密和偏转电流刚度实验测试,测试结果与设计结果相符,对洛伦兹力磁轴承的设计具有重要意义。

关 键 词:磁悬浮陀螺飞轮  磁轴承  洛伦兹力  有限元分析  空间应用
收稿时间:2017-06-08

Novel internal Lorentz magnetic bearing for magnetic bearing gyrowheel
LIU Qiang,ZHAO Yong,DAI Feng-yan,REN Yuan,WANG Wei-jie. Novel internal Lorentz magnetic bearing for magnetic bearing gyrowheel[J]. Optics and Precision Engineering, 2018, 26(2): 399-409. DOI: 10.3788/OPE.20182602.0399
Authors:LIU Qiang  ZHAO Yong  DAI Feng-yan  REN Yuan  WANG Wei-jie
Affiliation:1. Institute of Precision Electromagnetic Equipment and Advanced Measurement Technology, Beijing Institute of Petrochemical Technology, Beijing 102617, China;2. Magnetic Bearings Center for Researching and Precision Manufacturing, Beijing Institute of Petrochemical Technology, Beijing 102617, China;3. Department of Space Equipment, Equipment Academy, Beijing 101416, China
Abstract:To remedy the limitations of external Lorentz magnetic bearing with poor gas flux density uniformity, an internal Lorentz magnetic bearing for magnetic bearing gyrowheel was presented. The three dimensional finite element method was used for analysis of the gas flux densities of two schemes. The gas flux density rates of internal scheme in circumferential and longitudinal directions were 0.8% and 8.4%, less than that of extern scheme of 15.0% and 23.7%, respectively. The integration method was applied to accurate calculation of internal scheme magnetic resistances segmented by magnetic field division. The magnetic mathematical model of magnetic bearing was established, and the key structure parameters of reverse current stiffness were obtained. Then, by taking shape and structure parameters of internal scheme, the optimal design was achieved through finite element method. The results show that in the case of improvement of gas flux density uniformity the maximum and minimum flux densities in winding region are 0.464 T and 0.427 T, which are increased by 14.6% and 16.0% compared with initial values of 0.404 T and 0.368 T, respectively. According to optimization results, an internal Lorentz magnetic bearing is manufactured and its gas flux density and current stiffness are measured. Tests have a good agreement with design results, which has great significance in the design of Lorentz magnetic bearing.
Keywords:magnetic bearing gyrowheel  magnetic bearing  Lorentz force  finite element analysis  space application
本文献已被 CNKI 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号