首页 | 本学科首页   官方微博 | 高级检索  
     

车载光电侦察平台视轴稳定技术研究
引用本文:方宇超,李梦雪,车英,盖竹秋.车载光电侦察平台视轴稳定技术研究[J].光学精密工程,2018,26(2):410-417.
作者姓名:方宇超  李梦雪  车英  盖竹秋
作者单位:1. 长春理工大学 光电工程学院, 吉林 长春 130022;2. 长春汽车工业高等专科学校 汽车运用学院, 吉林 长春 130013;3. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
基金项目:国家自然科学基金资助项目(No.61405191)
摘    要:为了进一步提高光电平台伺服控制系统的抗扰动能力,提出一种基于自抗扰控制器的改进型速度稳定回路。首先,分析了平台视轴稳定回路的数学模型并引入电流环对其进行了化简,通过伺服控制系统中扰动作用原理,引入扰动总和的思想。然后,设计含有降阶扩张状态观测器的自抗扰控制器,对扰动总和实时观测并进行线性化前馈补偿。最后,以某型车载光电平台为控制对象,进行了PI控制器与自抗扰控制器的对比实验。实验结果表明,采用自抗扰控制器伺服控制系统相比PI控制法的阶跃响应速度更快,超调幅值仅为PI控制法的26.98%。使用摇摆台引入的频率为2.5Hz的正弦扰动,系统稳态误差幅值仅为PI控制法的9.76%。在系统模型参数改变±15%范围内,自抗扰控制器仍具有良好的抗扰能力,表现出很强的鲁棒性,满足光电平台的性能要求,对提升平台抗扰能力有着较高的实用性。

关 键 词:光电平台  降阶扩张状态观测器  改进型速度环  前馈补偿  抗扰能力
收稿时间:2017-08-01

Study on boresight stabilized technology of vehicle photoelectric reconnaissance platform
FANG Yu-chao,LI Meng-xue,CHE Ying,GE Zhu-qiu.Study on boresight stabilized technology of vehicle photoelectric reconnaissance platform[J].Optics and Precision Engineering,2018,26(2):410-417.
Authors:FANG Yu-chao  LI Meng-xue  CHE Ying  GE Zhu-qiu
Affiliation:1. College of Photoelectric Engineering, Changchun University of Science and Technology, Changchun 130022, China;2. College of Automotive Application, Changchun Automobile Industry Institute, Changchun 130013, China;3. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract:In order to improve the ability of anti-disturbance of the servo control system for photoelectric platform, an improved velocity loop based on ADRC method was presented. Firstly, the analyses of boresight stability loop of the photoelectric platform were conducted to simplified its mathematical model. Then the general disturbance was introduced by analyzing the disturbance mechanism in servo control system. Secondly, a new controller based on a reduced-order ESO was designed, and was applied to the improved velocity loop, which took real-time observation on the general disturbance and compensated the disturbance linearly. Finally, a contrastive experiment was conducted between PI controller and ADRC controller by using a vehicle-borne photoelectric platform as control object. The experimental results showed that the speed of step signal response of ADRC controller was faster than that of PI controller. The overshoot amplitude was only 26.98% of that in PI controller. When the frequency of 2.5 Hz sinusoidal disturbance was used by swing table, the system steady-state error amplitude was only 9.76% of that in PI controller. Within the scope of the system model parameters changed plus or minus by 15%, the ADRC controller still achieved excellent anti-disturbance capacity, which showed strong robustness and met the performance requirements for vehicle photoelectric platform. It is very practical in improving the capacity of disturbance resistance for photoelectric platform.
Keywords:photoelectric platform  reduced-order ESO  improved velocity loop  feedforward compensation  disturbance resistance capacity
本文献已被 CNKI 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号