首页 | 本学科首页   官方微博 | 高级检索  
     

IWO缓冲层对磁控溅射生长绒面HGZO薄膜性能的影响
引用本文:王斐,陈新亮,张翅,黄茜,张德坤,孙建,魏长春,张晓丹,赵颖,耿新华.IWO缓冲层对磁控溅射生长绒面HGZO薄膜性能的影响[J].光电子.激光,2012(6):1098-1102.
作者姓名:王斐  陈新亮  张翅  黄茜  张德坤  孙建  魏长春  张晓丹  赵颖  耿新华
作者单位:南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室;南开大学光电子薄膜器件与技术研究所,光电子薄膜器件与技术天津市重点实验室,光电信息技术科学教育部重点实验室
基金项目:国家“973”重点基础研究(2011CBA00705,2011CBA00706,2011CBA00707);天津市应用基础及前沿技术研究计划(09JCYBJC06900);中央高校基本科研业务费专项资金(65010341)资助项目
摘    要:研究了W掺In2O3(IWO)缓冲层(buffer layer)对磁控溅射直接生长绒面结构H化Ga掺杂ZnO(HGZO)薄膜的微观结构和光电性能的影响。实验发现,加入IWO缓冲层能够有效地增大薄膜表面粗糙度,提高了薄膜光散射能力,薄膜绒度(550nm波长处)由7.05%提高至18.37%;具有IWO缓冲层的HGZO(IWO/HGZO)薄膜的电学性能稍微提升。通过优化工艺条件,当IWO缓冲层厚为10nm时,生长获得的IWO/HGZO复合薄膜方块电阻为3.6Ω,电阻率为6.21×10-4Ωcm,可见光及近红外区域透过率(400~1 100nm)为82.18%,薄膜绒度(550nm波长处)为18.37%。

关 键 词:磁控溅射  H化Ga掺杂ZnO(HGZO)薄膜  W掺In2O3(IWO)缓冲层  绒面结构  薄膜太阳能电池

Influence of IWO buffer layer on the properties of textured surface HGZO thin films deposited via reactive magnetron sputtering
CHEN Xin-liang,ZHANG De-kun,WEI Chang-chun,ZHANG Xiao-dan and GENG Xin-hua.Influence of IWO buffer layer on the properties of textured surface HGZO thin films deposited via reactive magnetron sputtering[J].Journal of Optoelectronics·laser,2012(6):1098-1102.
Authors:CHEN Xin-liang  ZHANG De-kun  WEI Chang-chun  ZHANG Xiao-dan and GENG Xin-hua
Affiliation:Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China;Institute of Photo-electronic Thin Film Devices and Technology,Tianjin Key Laboratory of Photo-electronic Thin Film Devices and Technology,Key Laboratory of Opto-electronic Information Science and Technology for Ministry of Education,Nankai University,Tianjin 300071,China
Abstract:The influence of W-doped In2O3(IWO) buffer layer on the microstructure,electrical and optical performance of hydrogenated Ga-doped zinc oxide(HGZO) thin films deposited via reactive magnetron sputtering was researched.The experiments indicate that the IWO buffer layer can effectively improve the surface roughness and enhance the light scattering ability of natively textured surface HGZO thin films.The haze value at 550 nm wavelength increases from 7.05%(without buffer layer) to 18.37%(with buffer layer).In addition,the IWO buffer layer slightly improves the electrical performance.Through the optimization of process conditions,the IWO/HGZO thin film with 10 nm thick IWO buffer layer exhibits high optical transmittance of ~82.18% in the visible and near infrared region(400-1 100 nm) and excellent electrical properties with a lower sheet resistance of ~3.6 Ω and the resistivity of ~6.21×10-4 Ωcm.The high haze value of 18.37% at 550 nm wavelength is obtained.
Keywords:magnetron sputtering  hydrogenated Ga-doped zinc oxide(HGZO) thin films  W-doped In2O3(IWO) buffer layer  textured surface  thin film solar cells
本文献已被 CNKI 等数据库收录!
点击此处可从《光电子.激光》浏览原始摘要信息
点击此处可从《光电子.激光》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号