Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems |
| |
Authors: | A. John Arul N. Kannan Iyer K. Velusamy |
| |
Affiliation: | aReactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India;bDepartment of Mechanical Engineering, IITB, Mumbai 400078, India |
| |
Abstract: | Reliability analysis of passive systems mainly involves quantification of the margin to safety limits in probabilistic terms. For systems represented by complex models, propagating input uncertainty to get the response uncertainty and hence probability information requires intensive computational effort. Here a computationally efficient method for the functional reliability analysis of passive fluid dynamical systems is presented. The approach is based on continuous adjoint operator technique to generate a response surface approximating the given system model from the sensitivity coefficients. A numerical application of this method to the reliability analysis of heat transport in an asymmetrical natural convection loop is demonstrated. Computational efficiency and accuracy compared with the direct Monte-Carlo and forward response surface methods. |
| |
Keywords: | Adjoint operator Sensitivity Response surface Reliability Natural convection Passive system Fluid dynamics |
本文献已被 ScienceDirect 等数据库收录! |