首页 | 本学科首页   官方微博 | 高级检索  
     

基于规则的分类数据离群挖掘方法研究
引用本文:史东辉,蔡庆生,倪志伟,张春阳. 基于规则的分类数据离群挖掘方法研究[J]. 计算机研究与发展, 2000, 37(9): 1094-1100
作者姓名:史东辉  蔡庆生  倪志伟  张春阳
作者单位:中国科学技术大学计算机科学系,合肥,230027
基金项目:国家自然科学基金资助!(项目编号 69675 0 16)
摘    要:离散数据的挖掘(outlier minign,简称离群挖掘)是数据挖掘的重要内容,现有的离群数据挖掘算法大多对分类数据(categorical data)缺乏有效的处理,提出了基于规则的分类数据离群挖掘方法,采用多层最大离群支持度maxsup,搜索离群规则,有效地解决了这一问题,用这一方法对医学流行病数据进行了各种,分析了该方法的适用范围、性能,验证了方法正确性;另外,实验表明,经过离散化后,基于

关 键 词:离散数据 离群挖掘 分类数据 流行病数据库 医学

RULE-BASED OUTLIER MINING APPROACH IN CATEGORICAL DATA
SHI Dong-Hui,CAI Qing-Sheng,NI Zhi-Wei,ZHANG Chun-Yang. RULE-BASED OUTLIER MINING APPROACH IN CATEGORICAL DATA[J]. Journal of Computer Research and Development, 2000, 37(9): 1094-1100
Authors:SHI Dong-Hui  CAI Qing-Sheng  NI Zhi-Wei  ZHANG Chun-Yang
Abstract:Outlier mining is an important part of data mining. Existing outlier mining approaches lack valid processing for categorical data. A kind of rule based outlier mining approach in categorical data is introduced, which can solve the problem effectively. Some experiments have been done on epidemiology data in this method. The range of application and performance of this approach are analyzed, and it is found that if rule based outlier mining approach in categorical data is applicable in other continuous data after being discreted, good results can also be obtained.
Keywords:rule   outlier   outlier mining   categorical data
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号