首页 | 本学科首页   官方微博 | 高级检索  
     


Inactivation of Bacillus cereus spores using a combined treatment of UV-TiO2 photocatalysis and high hydrostatic pressure
Affiliation:1. Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France;2. Centre Technique pour la Conservation des Produits Agricoles (CTCPA), Unité Expertise dans la Maîtrise du Risque industriel en Thermorésistants sporulés (EMaiRIT''S), 449 Avenue Clément Ader, 84911 Avignon, France
Abstract:Bacillus cereus spores are resistant to high hydrostatic pressure (HHP) processing treatment. A combination of UV-TiO2 photocatalysis (UVTP for 10 min) and two cycles of 600 MPa HHP treatment for 10 min for the first cycle and 1 min for the second cycle (UVTP-2HHP) at ambient temperature was applied to inactivate B. cereus spores inoculated on a solidified agar matrix (SAM) used as a model matrix. Two cycles of HHP treatment were used as a strategy for induction of spore germination, followed by inactivation. UVTP and 2 cycles of HHP resulted in a 5.0-log CFU/cm2 spore reduction (initial spore count was 6.6 log CFU/cm2), including an approximate 0.8-log CFU/cm2 reduction due to a synergistic effect. The inactivation mechanism of UVTP pretreatment was related to lipid peroxidation of the spore membrane based on the level of malondialdehyde (MDA) making spores susceptible to the HHP treatment. Flow cytometry and transmission electron microscopic (TEM) analyses showed severe physiological alteration and structural damage to spores after the combined treatment. UVTP and 2 cycles of HHP showed potential for effective inactivation of B. cereus to ensure food safety from B. cereus spores on food products.Practical applicationsInactivation of bacterial spores remains a technical challenge for HHP and other interventions because spores are highly resistant to high pressure. Pretreatment with UVTP followed by two cycles of HHP resulted in reduction in B. cereus spores due to a synergistic effect. This hurdle technology of UVTP and HHP can help food industry in ensuring food safety against the Bacillus spores.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号