首页 | 本学科首页   官方微博 | 高级检索  
     


Robust hybrid supervisory control for spacecraft close proximity missions
Affiliation:1. Department of Aerospace Engineering, The University of Michigan, 1320 Beal Avenue Ann Arbor, MI 48109-2140;2. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA
Abstract:We consider the problem of rendezvous, proximity operations, and docking of an autonomous spacecraft. The problem can be conveniently divided into three phases: (1) rendezvous phase; (2) docking phase; and (3) docked phase. On each phase the task to perform is different, and requires a different control algorithm. Angle and range measurements are available for the entire mission, but constraints and tasks to perform are different depending on the phase. Due to the different constraints, available measurements, and tasks to perform on each phase, we study this problem using a hybrid systems approach, in which the system has different modes of operation for which a suitable controller is to be designed. Following this approach, we characterize the family of individual controllers and the required properties they should induce to the closed-loop system to solve the problem within each phase of operation. Furthermore, we propose a supervisory algorithm that robustly coordinates the individual controllers so as to provide a solution to the problem. In addition, we present specific controller designs that appropriately solve the control problems for individual phases and validate them numerically.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号