首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C均值的图像分割
引用本文:李红,吴粉侠. 基于模糊C均值的图像分割[J]. 网络安全技术与应用, 2014, 0(8): 126-126
作者姓名:李红  吴粉侠
作者单位:咸阳师范学院信息工程学院,陕西712000
基金项目:基金项目:陕西省教育科学“十二五”规划课题(NO:SGHl3334),成阳师范学院科研基金项目(No:11XSYK329,No:13XSYK058.13XSYK053,13XSYK055)、
摘    要:图像分割的质量直接影响后期的图像分析、识别和解释的质量。本文主要研究了基于模糊c均值算法的图像分割,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。实验结果表明文中用到的图像分割算法对图像分割的效果均优于对比算法的分割效果。

关 键 词:图像分割  模糊c均值  隶属度函数

Based on the fuzzy c-means image segmentation
Li Hong,Wu Fenxia. Based on the fuzzy c-means image segmentation[J]. Net Security Technologies and Application, 2014, 0(8): 126-126
Authors:Li Hong  Wu Fenxia
Affiliation:Li Hong, Wu Fenxia
Abstract:image segmentation quality direcdy influences the quality of the image analysis, identification and interpretation in the late. This paper mainly studied the image segmentation based on fuzzy c-means algorithm, it is obtained by optimizing the objective function for each sample points for all class center membership degree, and the category of the sample points in order to achieve the goal of automatic classifying sample data. The experimental results show that the use of image segmentation algorithm for image segmentation algorithm is superior to contrast the effect of the segmentation results.
Keywords:image segmentation  Fuzzy c-means  Membership functions
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号