首页 | 本学科首页   官方微博 | 高级检索  
     


Bioavailability of iron sensed by a phytoplanktonic Fe-bioreporter
Authors:Hassler Christel S  Twiss Michael R
Affiliation:Department of Biology, Center for the Environment, Clarkson University, Potsdam, New York 13699-5805, USA.
Abstract:This study describes a short-term (12 h) evaluation of iron (Fe) bioavailability to an Fe-dependent cyanobacterial bioreporter derived from Synechococcus PCC 7942. Several synthetic ligands with variable conditional stability constants for Fe(lll) (K* of 10(19.8) to 10(30.9)), in addition to several defined natural Fe-binding ligands and a fulvic acid of aquatic origin (Suwannee River), were used to elucidate the forms of Fe that are discerned by this phytoplanktonic microbe: Fe-HEBD (log conditional stability constant, K*, = 28.1, HEBD = N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid monohydrochloride hydrate), Fe-HDFB (K* = 30.9, DFB = desferroxamine B), Fe-ferrichrome (K* = 23.2), Fe-DTPA (K* = 21.1, DTPA = diethylenetrinitrilopentaacetic acid), Fe-(8HQS)2 (K* = 20.4, 8HQS = 8-hydroxyquinoline-5-sulfonic acid), Fe-CDTA (K* = 19.8, CDTA = trans-1,2-cyclohexylenedinitrilotetraacetic acid), and Fe-EDTA (K* = 19.2). Iron bioavailability sensed by the bioreporter was related to diffusion limitation and activity of high-affinity transporters rather than by siderophore secretion. Iron complexed with a K* < 23.2 contributes to the bioavailable pool; bioavailability could be explained by disjunctive ligand exchange considerations and fully, partially, and nonbioavailable complexes could be distinguished according to their conditional stability constant. The use of Fe-bioreporters provides a relevant measurement of bioavailability to an important group of primary producers in freshwaters (cyanobacteria) and is thus a promising technique for understanding Fe cycling in aquatic systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号