首页 | 本学科首页   官方微博 | 高级检索  
     

基于EKF-AH联合算法的锂离子电池荷电状态估算
引用本文:陈盛华. 基于EKF-AH联合算法的锂离子电池荷电状态估算[J]. 电源技术, 2019, 43(1): 103-106
作者姓名:陈盛华
作者单位:河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津300130;河北工业大学河北省电磁场与电器可靠性重点实验室,天津300130
摘    要:估算算法先进性与否是影响锂离子电池荷电状态(SOC)估算准确度的重要因素。用扩展卡尔曼滤波(EKF)算法估算锂离子电池SOC时在低容量区和估算后期误差较大,为此将EKF算法和安时积分法(AH)相结合,提出EKF-AH联合算法。选用恒流放电及动态工况对联合算法进行实验验证。结果表明,在两个实验工况下对SOC的估算误差分别小于2%和3%。因此EKF-AH相比于EKF,估算精度提高。

关 键 词:锂离子电池  荷电状态估算  扩展卡尔曼  安时积分法

Charge state estimation of lithium-ion batteries based on EKF-AH joint algorithm
CHEN Sheng-hua. Charge state estimation of lithium-ion batteries based on EKF-AH joint algorithm[J]. Chinese Journal of Power Sources, 2019, 43(1): 103-106
Authors:CHEN Sheng-hua
Affiliation:(State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China;Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province,Hebei University of Technology, Tianjin 300130,China)
Abstract:CHEN Sheng-hua(State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China;Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province,Hebei University of Technology, Tianjin 300130,China)
Keywords:lithium-ion battery  SOC estimation  extended Kalman filter  ampere-hour integration
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号