首页 | 本学科首页   官方微博 | 高级检索  
     

基于GA-RBF神经网络的电力系统短期负荷预测
引用本文:李婧,田龙威,王艳青. 基于GA-RBF神经网络的电力系统短期负荷预测[J]. 上海电力学院学报, 2019, 35(3): 205-210
作者姓名:李婧  田龙威  王艳青
作者单位:上海电力学院计算机科学与技术学院;上海电力学院电气工程学院
摘    要:针对短期负荷预测问题,提出了一种遗传算法-径向基函数(GA-RBF)神经网络负荷预测方法,解决传统径向基函数(RBF)神经网络预测中难以确定最佳隐藏层数问题,以提高预测的准确性。首先分析了GA算法模型和RBF神经网络模型;然后利用GA算法与RBF模型结合得到GA-RBF负荷预测模型;最后利用仿真工具对所建模型进行训练和预测。结果表明,与传统方法相比,其平均绝对百分误差值降低了4. 7%,证明了该方法的精确性和有效性。

关 键 词:电力系统  短期负荷预测  遗传算法  径向基函数
收稿时间:2018-07-05

Short-term Load Prediction of Power System Based on GARBF Neural Network
LI Jing,TIAN Longwei and WANG Yanqing. Short-term Load Prediction of Power System Based on GARBF Neural Network[J]. Journal of Shanghai University of Electric Power, 2019, 35(3): 205-210
Authors:LI Jing  TIAN Longwei  WANG Yanqing
Affiliation:School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China,School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China and School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Abstract:A genetic algorithm-radial basis function (GA-RBF) neural network load prediction method is proposed to solve the problem of the difficulty in determining the optimal number of hidden layers in traditional radial basis function (RBF) neural network prediction so as to improve the accuracy of prediction.Firstly,GA algorithm model and RBF neural network model are analyzed.Then GA-RBF load forecasting model is obtained by combining GA algorithm with RBF model.Finally,the model is trained and predicted using simulation tools.The result shows that the average absolute percentage error (MAPE) is reduced by 4.7% compared with the traditional method,which proves the accuracy and effectiveness of this method.
Keywords:power system  short-term load forecasting  genetic algorithm  radial basis function
本文献已被 CNKI 等数据库收录!
点击此处可从《上海电力学院学报》浏览原始摘要信息
点击此处可从《上海电力学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号