首页 | 本学科首页   官方微博 | 高级检索  
     

一维EEP自适应技术新进展:从线性到非线性
引用本文:袁驷,杜炎,邢沁妍,叶康生. 一维EEP自适应技术新进展:从线性到非线性[J]. 工程力学, 2012, 0(Z2): 1-8
作者姓名:袁驷  杜炎  邢沁妍  叶康生
作者单位:清华大学土木工程系土木工程安全与耐久教育部重点实验室
基金项目:国家自然科学基金项目(51078199,50678093,50278046);长江学者和创新团队发展计划项目(IRT00736)
摘    要:有限元后处理中超收敛计算的EEP(单元能量投影)法以及基于该法的自适应分析方法对线性ODE(常微分方程)问题的求解已经获得了全面成功,也推动了非线性ODE问题自适应求解的研究。经过研究,已经实现了一维有限元自适应分析技术从线性到非线性的跨越,该文意在对这方面的进展作一简要综述与报道。该文提出一种基于EEP法的一维非线性有限元自适应求解方法,其基本思想是通过线性化,将现有的线性问题自适应求解方法直接引入非线性问题求解,而无需单独建立非线性问题的超收敛计算公式和自适应算法,从而构成一个统一的、通用的非线性问题自适应求解算法。该文给出的数值算例表明所提出的算法高效、稳定、通用、可靠,解答可逐点按最大模度量满足用户给定的误差限,可作为先进高效的非线性ODE求解器的核心理论和算法。

关 键 词:非线性  常微分方程  有限元  单元能量投影  自适应求解

NEW PROGRESS IN 1D SELF-ADAPTIVE ANALYSIS BASED ON EEP TECHNOLOGY:FROM LINEARITY TO NONLINEARITY
YUAN Si,DU Yan,XING Qin-yan,YE Kang-sheng. NEW PROGRESS IN 1D SELF-ADAPTIVE ANALYSIS BASED ON EEP TECHNOLOGY:FROM LINEARITY TO NONLINEARITY[J]. Engineering Mechanics, 2012, 0(Z2): 1-8
Authors:YUAN Si  DU Yan  XING Qin-yan  YE Kang-sheng
Affiliation:(Department of Civil Engineering,Tsinghua University,Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry,Beijing 100084,China)
Abstract:The EEP(Element Energy Projection) method for super-convergence calculation in the post-processing stage of FEM and the self-adaptive strategy based on the EEP technology are fully successful for linear ODEs and hence pave the way for extending to the self-adaptive analysis of nonlinear ODEs.With recent intensive studying,the technology transfer from linearity to nonlinearity in the self-adaptive analysis of 1D problems has successfully been achieved and the present paper gives a brief overview and report about this progress.A new self-adaptive finite element(FE) strategy for nonlinear ODE problems was proposed.In this method,by means of linearization,the existing linear self-adaptive strategy based on the EEP method is incorporated directly into the solution of nonlinear ODEs to avoid constructing super-convergent formulae and the self-adaptive algorism for each specific and individual nonlinear problem.As a result,a general and unified self-adaptive algorism was proposed.The numerical examples show that the proposed method is highly efficient,stable,general and reliable with the results satisfying the user-preset error tolerance by maximum norm,and hence can serve as the core theory and the algorithm of an advanced and efficient FE solver for nonlinear ODEs.
Keywords:nonlinear  ODEs  FEM  element energy projection  self-adaptive
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号