首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of uncertainty in visibilty samples via average correlation in a synthetic aperture interferometric radiometer
Authors:Xianxun Yao  Cheng Zheng  Jin Zhang  Jungang Miao
Affiliation:School of Electronic and Information Engineering, Beihang University, Beijing, China
Abstract:Synthetic aperture interferometric radiometry (SAIR) has provided an effective approach for achieving high spatial resolution in remote sensing at microwave frequencies. The radiometric sensitivity of a synthetic aperture interferometric radiometer is determined by the uncertainty in visibility samples. Generally, visibility samples can be calculated by utilizing either nominal or redundant correlation methods, such as in microwave imaging radiometry with aperture synthesis. In this paper, we use the average of results from both methods, which results in a 1.5 dB improvement in the signal-to-noise ratio (SNR) of visibility samples by assuming double side band (DSB) inphase/quadrature (I/Q) demodulation. Moreover, the requirement for the baseband signals to have a high sampling rate for optimum visibility sample uncertainty can be greatly relaxed, regardless of the type of demodulation. The receiver complexity, volume, and power consumption will be also much lower, which is critical for airborne and space-borne SAIR applications. The mathematical derivation is presented in detail followed by verifications with several experiment results based on the SAIR prototype instrument.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号