首页 | 本学科首页   官方微博 | 高级检索  
     


Application of a three-component scattering model over snow-covered first-year sea ice using polarimetric C-band SAR data
Authors:Mosharraf Hossain  Mohammed Dabboor  M Chris Fuller
Affiliation:1. Cryosphere Climate Research Group, Department of Geography, University of Calgary, Calgary, AB, Canada T2N 1N4;2. Science and Technology Branch, Environment Canada, Government of Canada, Toronto, ON, Canada M3H 5T4
Abstract:In this study we examine the utility of a three-component scattering model to quantify the sensitivity of radar incidence angle over snow-covered landfast first-year sea ice (FYI) during the late winter season. This three-component scattering model is based on (1) surface scattering contributed from the snow-covered FYI (smooth-ice (SI), rough-ice (RI), and deformed-ice (DI) types); (2) volume scattering contributed from snow layers which consist of enlarged snow grains, elevated brine volume, and preferential orientation of snow grains relative to radar look direction, as well as the underlying sea ice; and (3) double-bounce scattering contributed from ice ridges and ice fragments. This study uses RADARSAT-2 C-band polarimetric synthetic aperture radar (POLSAR) data acquired on 15 and 18 May 2009 for Hudson Bay, near Churchill, during late winter with surface air temperatures ≤?8°C at two different incidence angles (29° and 39°). The three-component scattering model is used to discriminate between snow-covered smooth, rough, and deformed FYI. The model shows enhanced discrimination at an incidence angle of 29°, compared with an incidence angle of 39°. The model is then used to quantify the sensitivity of radar incidence angle to each of the three scattering contributors. The results show that the relative fraction of surface scattering dominates for all three FYI types (SI ≈ 77.3%; RI ≈ 66.0%; and DI ≈ 61.1%) at 29° and decreases with increasing incidence angle and surface roughness. Volume scattering is found to be the second dominant mechanism (SI ≈ 19.1%, RI ≈ 32.2%, and DI ≈ 37.4% at 29° and SI ≈ 28.3%, RI ≈ 41.0%, and DI ≈ 49.5% at 39°) over snow-covered FYI and it increases with incidence angle and surface roughness. The double-bounce scattering contribution is low for all FYI types at both incidence angles.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号