首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析的最小二乘支持向量机岩性识别方法
引用本文:钟仪华,李榕. 基于主成分分析的最小二乘支持向量机岩性识别方法[J]. 测井技术, 2009, 33(5): 425-429
作者姓名:钟仪华  李榕
作者单位:西南石油大学理学院,四川,成都,610500
基金项目:四川省教育厅重点项目 
摘    要:测井解释过程中的岩性识别实质是多个指标数据的模式识别问题。常规测井解释方法很难表征储层的真实特性。提出一种基于主成分分析的最小二乘支持向量机的岩性识别预测模型(PCA—LSSVM);介绍了主成分分析法和最小二乘支持向量机原理。通过主成分分析方法对测井数据进行分析并提取影响岩性识别的主要因素.依据分析结果建立基于最小二乘支持向量分类机的岩性识别模型。云南陆良盆地3口井的117个地层的识别结果与实际取心资料的符合率达到92.5%。应用表明,将主成分分析结合最小二乘芰持向量机进行岩性识别.简化了网络结构.具有更快的运算速度和准确率.是一种值得推广使用的方法。

关 键 词:测井解释  岩性识别  主成分分析  最小二乘支持向量机  累积方差

Application of Principal Component Analysis and Least Square Support Vector Machine to Lithology Identification
ZHONG Yi-hua,LI Rong. Application of Principal Component Analysis and Least Square Support Vector Machine to Lithology Identification[J]. Well Logging Technology, 2009, 33(5): 425-429
Authors:ZHONG Yi-hua  LI Rong
Affiliation:ZHONG Yi-hua,LI Rong(School of Sciences,Southwest Petroleum University,Chengdu,Sichuan 610500,China)
Abstract:Oil and gas reservoir recognition is virtually pattern recognition in the process of well log interpretation with several indexes.It's difficult to show the reservoir characteristics by conventional log interpretation methods.Proposed are a method of identifying lithology based on principal component analysis and least square support vector machine(PCA-LSSVM).Introduced are the theory of principal component analysis and least square support vector machine.The extracted principal components from log data by ...
Keywords:log interpretation  lithology identification  principal component analysis  least square support vector machine  cumulative contribution  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号