首页 | 本学科首页   官方微博 | 高级检索  
     

主成分—费歇尔判别模型在煤与瓦斯突出等级预测中的应用
引用本文:陈恋,袁梅,高强,许石青,陈文,李鑫灵,隆能增. 主成分—费歇尔判别模型在煤与瓦斯突出等级预测中的应用[J]. 工矿自动化, 2020, 46(3): 55-62
作者姓名:陈恋  袁梅  高强  许石青  陈文  李鑫灵  隆能增
作者单位:贵州大学 矿业学院,贵州 贵阳,550025;贵州大学 矿业学院,贵州 贵阳 550025;复杂地质矿山开采安全技术工程中心,贵州 贵阳 550025;金沙县工业和信息化局,贵州 金沙,551800;贵州大西南矿业有限公司,贵州 金沙,551800
基金项目:国家自然科学基金项目(51864009);贵州省科技支撑计划项目(黔科合支撑〔2018〕2789);贵州省科技计划项目(黔科合支撑〔2019〕2887)。
摘    要:针对现有煤与瓦斯突出预测方法存在计算过程较复杂、预测主观性强、预测精度较低等问题,构建了主成分-费歇尔判别模型,并将其应用于某煤矿的煤与瓦斯突出等级预测。从瓦斯因素、煤体结构及地质构造方面分析得出了影响该矿煤与瓦斯突出的因素包括瓦斯压力、瓦斯含量及瓦斯放散初速度等指标。以影响该矿煤与瓦斯突出的23组实测数据为基础,首先利用主成分分析模型对影响该矿的煤与瓦斯突出因素进行降维,提取与指标相关度较高的5个主成分,然后将5个主成分输入费歇尔判别模型,并根据判别函数对样本进行煤与瓦斯突出等级预测。应用结果表明:主成分-费歇尔判别模型具有较高的可信性,能对煤与瓦斯突出等级进行准确预测,训练样本的正确率为100%,待测样本的预测结果也与该矿煤与瓦斯突出的实际情况相符,误判率为0,为准确预测煤与瓦斯突出提供了一种新方法。

关 键 词:煤与瓦斯突出  主成分-费歇尔模型  等级预测  累计贡献率  聚类  判别

Application of principal component-Fisher discrimination model in grade prediction of coal and gas outburst
CHEN Lian,YUAN Mei,GAO Qiang,XU Shiqing,CHEN Wen,LI Xinling,LONG Nengzeng. Application of principal component-Fisher discrimination model in grade prediction of coal and gas outburst[J]. Industry and Automation, 2020, 46(3): 55-62
Authors:CHEN Lian  YUAN Mei  GAO Qiang  XU Shiqing  CHEN Wen  LI Xinling  LONG Nengzeng
Affiliation:(Mining College,Guizhou University,Guiyang 550025,China;Engineering Center for Safe Mining Technology Under Complex Geologic Conditions,Guiyang 550025,China;Jinsha County Bureau of Industry and Information Technology,Jinsha 551800,China;Guizhou Dasouthwest Mining Co.,Ltd.,Jinsha 551800,China)
Abstract:In view of problems of complicated calculation process,strong subjectivity and low accuracy in existing prediction methods of coal and gas outburst,aprincipal component-Fisher discriminant model was constructed and applied to the prediction of coal and gas outburst grade in a coal mine.Based on analysis of gas factors,coal structure and geological structure,the factors that affect coal and gas outburst of the coal mine included gas pressure,gas content and initial velocity of gas release and so on were obtained.On the basis of 23 groups measured data of coal and gas outburst of the coal mine,firstly,the principal component analysis model was used to do dimension reduction of influencing factors of the mine coal and gas outburst,5 principal components with high index correlation were extracted.Then the5 principal components were input into Fisher discriminant model,and the grade of coal and gas outburst of samples was predicted according to discriminant function.The application results show that the principal component-Fisher discriminant model has high credibility,and can accurately predict coal and gas outburst grade,the training sample accuracy is 100%,the predicted results of the tested sample are also consistent with the actual situation of coal and gas outburst of the coal mine,misjudgment rate of 0,which provides a new method of accurate prediction of coal and gas outburst.
Keywords:coal and gas outburst  principal component-Fisher model  grade prediction  cumulative contribution rate  clustering  discrimination
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号