首页 | 本学科首页   官方微博 | 高级检索  
     

煤矸石图像分类方法
引用本文:饶中钰,吴景涛,李明. 煤矸石图像分类方法[J]. 工矿自动化, 2020, 46(3): 69-73
作者姓名:饶中钰  吴景涛  李明
作者单位:中国矿业大学 信息与控制工程学院,江苏 徐州,221116;中国矿业大学 信息与控制工程学院,江苏 徐州 221116;冀中能源股份有限公司 章村煤矿,河北 邢台 054000
基金项目:中国博士后科学基金资助项目(2014M551695);徐州市科技计划资助项目(KC17075)。
摘    要:针对人工排矸法、机械湿选法、γ射线分选法等传统煤矸石分选方法无法兼顾快速高效性、安全无害性、简单操作性的问题,提出了基于机器视觉的煤矸石图像分类方法。对煤矸石图像进行增强、平滑去噪等预处理,采用基于距离变换的分水岭算法实现煤矸石图像分割提取。针对煤矸石分割图像,选取煤矸石图像的HOG特征及灰度共生矩阵,分别以支持向量机、随机森林、K近邻算法作为分类器进行基于特征提取的煤矸石分类识别;分别建立浅层卷积神经网络和基于ImageNet数据集预训练的VGG16网络,进行基于卷积神经网络的煤矸石分类识别。研究结果表明,基于VGG16网络的煤矸石图像分类方法准确率最高为99.7%,高于基于特征提取方法的91.9%和基于浅层卷积神经网络方法的92.5%。

关 键 词:煤矸石分选  煤矸石识别  图像分类  机器视觉  卷积神经网络

Coal-gangue image classification method
RAO Zhongyu,WU Jingtao,LI Ming. Coal-gangue image classification method[J]. Industry and Automation, 2020, 46(3): 69-73
Authors:RAO Zhongyu  WU Jingtao  LI Ming
Affiliation:(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China;Zhangcun Coal Mine,Jizhong Energy Resources Co.,Ltd.,Xingtai 054000,China)
Abstract:For problems that traditional coal-gangue separation methods such as manual separation method, mechanical wet-separation method,γ-ray separation method and so on could not give consideration to high efficiency,safety and easy operation,a coal-gangue image classification method based on machine vision was proposed.Coal-gangue image is pre-processed with enhancement,smoothing and denoising,then segmented and extracted by watershed algorithm based on distance conversion.HOG feature and gray-level co-occurrence matrix of the coal-gangue image are selected,and coal-gangue classification based on feature extraction is carried out by taking support vector machine,random forest and K-nearest neighbor algorithm as classifier separately.Coal-gangue image classification based on convolutional neural network is carried out by building shallow-level convolutional neural network and VGG16 network pre-trained by ImageNet dataset separately.The research results show that the maximum accuracy rate of the coal-gangue image classification method based on VGG16 is 99.7%,which is higher than that of the method based on feature extraction with 91.9% or the method based on shallow convolutional neural network with 92.5%.
Keywords:coal-gangue separation  coal-gangue identification  image classification  machine vision  convolutional neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号