首页 | 本学科首页   官方微博 | 高级检索  
     


Computationally efficient models for quantization effects in MOSelectron and hole accumulation layers
Authors:Hareland  SA Manassian  M Shih  W-K Jallepalli  S Wang  H Chindalore  GL Tasch  AlF Maziar  CM
Affiliation:Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX;
Abstract:In this paper, models appropriate for device simulators are developed which account for the quantum mechanical nature of accumulated regions. Accumulation layer quantization is important in deep submicron (⩽0.25 μm) MOS devices in the overlapped source/drain extension regions, in accumulation mode SOI devices, and in buried-channel PMOS structures. Computationally efficient models suitable for routine device simulation are presented that predict the reduction of the accumulated net electron (hole) sheet charge when quantization of the electron (hole) accumulation region is accounted for. The results of comparisons with self-consistent simulations support the validity of these models. In addition, simulation results will be shown which illustrate that when inversion layer quantum mechanical effects are modeled, it is also necessary to account for accumulation layer quantum mechanical effects in order to obtain more physically accurate as well as numerically stable solutions
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号