首页 | 本学科首页   官方微博 | 高级检索  
     


FPGA-based Physical Unclonable Functions: A comprehensive overview of theory and architectures
Affiliation:Advanced Cloud-System Research Center, School of Integrated Circuit, Southeast University, Nanjing 210000, China
Abstract:Physically Unclonable Functions (PUFs) are a promising technology and have been proposed as central building blocks in many cryptographic protocols and security architectures. Among other uses, PUFs enable chip identifier/authentication, secret key generation/storage, seed for a random number generator and Intellectual Property (IP) protection. Field Programmable Gate Arrays (FPGAs) are re-configurable hardware systems which have emerged as an interesting trade-off between the versatility of standard microprocessors and the efficiency of Application Specific Integrated Circuits (ASICs). In FPGA devices, PUFs may be instantiated directly from FPGA fabric components in order to exploit the propagation delay differences of signals caused by manufacturing process variations. PUF technology can protect the individual FPGA IP cores with less overhead. In this article, we first provide an extensive survey on the current state-of-the-art of FPGA based PUFs. Then, we provide a detailed performance evaluation result for several FPGA based PUF designs and their comparisons. Subsequently, we briefly report on some of the known attacks on FPGA based PUFs and the corresponding countermeasures. Finally, we conclude with a brief overview of the FPGA based PUF application scenarios and future research directions.
Keywords:Physical Unclonable Functions (PUFs)  Field-Programmable Gate Array  Hardware security  PUF applications  FPGA based PUFs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号