首页 | 本学科首页   官方微博 | 高级检索  
     


0D/2D Z-scheme heterojunctions of g-C3N4 quantum dots/ZnO nanosheets as a highly efficient visible-light photocatalyst
Affiliation:1. Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China;2. School of Materials Science and Engineering, Hunan University, Changsha 410082, China;3. School of Physics, Liaoning University, Shenyang 110036, China
Abstract:Constructing Z-scheme heterojunctions comprising of constituents with different dimensionality is an effective strategy to spatially separate electron and hole. To fully utilize the synergistic coupling effect of dimensionality, herein, we first immobilize g-C3N4 quantum dots (CNQDs) onto ZnO nanosheets with oxygen vacancies (OV-ZnO) to create a 0D/2D hybrid via a facile and cost-effective approach. The CNQDs/OV-ZnO heterojunctions display CNQDs content-dependent performance in visible-light photocatalytic activity. The optimal CNQDs/OV-ZnO heterojunction exhibits high photocatalytic activity for degradation of methyl blue and bisphenol A, where the kinetic constant is 11.4 and 32.5 fold of pure OV-ZnO, respectively. Photoluminescence, electrochemical impedance spectroscopy and photocurrent verify that the photogenerated electron-hole pairs in this 0D/2D Z-scheme heterojunction have been effectively separated. The enhanced photocatalytic activity could be attributed to the synergistic effect of efficient Z-scheme charge separation, highly dispersed 0D CNQDs, coordinating sites of 2D OV-ZnO nanosheets and the strong coupling between them. In addition, the 3D flower-like structure constructed by 2D nanosheets greatly inhibits the leaching and loss of the photocatalyst in the recycling process, and ensures the high recycling ability of CNQDs/OV-ZnO. This work paves the way toward designing novel visible-light 0D/2D photocatalysts in the application of solar energy.
Keywords:ZnO  0D/2D heterostructure  Z-scheme  Photocatalytic performance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号