首页 | 本学科首页   官方微博 | 高级检索  
     

基于HHT和OSF的复杂环境语音端点检测
引用本文:卢志茂, 金辉, 张春祥, 任明溪. 基于HHT和OSF的复杂环境语音端点检测[J]. 电子与信息学报, 2012, 34(1): 213-217. doi: 10.3724/SP.J.1146.2011.00477
作者姓名:卢志茂  金辉  张春祥  任明溪
作者单位:1. 哈尔滨工程大学信息与通信工程学院 哈尔滨 150001
2. 哈尔滨理工大学软件学院 哈尔滨150080
摘    要:希尔伯特-黄变换是一种全数据驱动的自适应非平稳信号时频分析方法,但是在强噪声环境下语音信号的希尔伯特能量谱曲线波动较大,对语音端点检测造成很大的影响,该文提出了一种基于希尔伯特-黄变换和顺序统计滤波的检测方法。该方法将含噪语音信号进行经验模态分解,通过对固有模态函数进行自适应权重选取获得信号的希尔伯特能量谱,利用顺序统计滤波器对每帧的能量谱进行平滑处理作为语音/非语音的鉴别特征。实验结果表明,该方法适用于复杂噪声环境的端点检测,在低信噪比情况下仍然能够有效地检测出语音信号,降低信号误检率。

关 键 词:语音信号处理   端点检测   希尔伯特-黄变换   顺序统计滤波   经验模态分解
收稿时间:2011-05-19
修稿时间:2011-09-05

Voice Activity Detection in Complex Environment Based on Hilbert-Huang Transform and Order Statistics Filter
Lu Zhi-Mao, Jin Hui, Zhang Chun-Xiang, Ren Ming-Xi. Voice Activity Detection in Complex Environment Based on Hilbert-Huang Transform and Order Statistics Filter[J]. Journal of Electronics & Information Technology, 2012, 34(1): 213-217. doi: 10.3724/SP.J.1146.2011.00477
Authors:Lu Zhi-mao    Jin Hui    Zhang Chun-xiang    Ren Ming-xi
Affiliation:(Information and Communication Engineering College, Harbin Engineering University, Harbin 150001, China)
(School of Software, Harbin University of Science and Technology, Harbin 150080, China)
Abstract:Hilbert-Huang Transform(HHT) is a fully data driven adaptive non-stationary signal time-frequency analysis method.But the Hilbert energy spectrum curve of speech signal is fluctuate in strong noise environment,it has a great influence to voice activity detection.So an effective voice activity detection algorithm is proposed based on HHT and Order Statistics Filter(OSF) in this paper.This method first decompose noise signal into intrinsic mode functions by empirical mode decomposition.Then the Hilbert energy spectrum is synthesized by adaptive weight selection of each intrinsic mode functions,through OSF to smooth the energy spectrum.Finally,the speech and noise divergence is judged by means of the smoothed energy spectrum.Experimental results show obviously that under complex noisy environment,this method is still able to effectively detect the speech signal,and reduce the error detection rate in low signal to noise ratio conditions.
Keywords:Speech signal processing  Voice Activity Detection (VAD)  Hilbert-Huang Transform (HHT)  Order Statistics Filter (OSF)  Empirical Mode Decomposition (EMD)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号