首页 | 本学科首页   官方微博 | 高级检索  
     


Breakdown degradation associated with elementary screw dislocations in 4H-SiC pn junction rectifiers
Authors:PG Neudeck  W Huang  M Dudley
Affiliation:

a NASA Lewis Research Center, M.S. 77-1, 21000 Brookpark Rd., Cleveland, OH 44135, USA

b Department of Materials Science and Engineering, SUNY, Stony Brook, NY 11794, USA

Abstract:It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector>2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector=1c with no hollow core) in densities on the order of thousands per cm2, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current–voltage (IV) characteristics of 4H-SiC p+n diodes. First, synchrotron white beam X-ray topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p+n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown IV knee, and no visible concentration of breakdown current. In contrast, devices that contained at least one elementary screw dislocation exhibited 5–35% reduction in breakdown voltage, a softer breakdown IV knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号