首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of modified layered double hydroxide on the flammability of intumescent flame retardant PP nanocomposites
Authors:Hui Shen  Wei Wu  Zhengyi Wang  Wenzheng Wu  Yue Yuan  Yanling Feng
Affiliation:Sino-German Joint Research Center of Advanced Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
Abstract:The dodecyl sulfate intercalated CaMgAl-hydrotalcites (layered double hydroxides [LDHs]) were successfully prepared by co-precipitation method, and characterized by X-ray diffraction analysis, infrared spectroscopy (Fourier transform infrared spectra [FT-IR]), thermogravimetry (TG-DTA), scanning electron microscope, and Brunner−Emmet−Teller (BET). The prepared LDHs were added to the intumescent flame retardant (IFR) polypropylene (PP) nanocomposites, and the limiting oxygen index method (LOI), vertical combustion method (UL-94), cone calorimetry (CCT), and other test methods were used to study its thermal stability and combustion performance. The results showed that when the flame retardant was composed of 23 wt% IFR and 2 wt% O-SDS-LDHs, the LOI value of the material was increased to 31.5%, reaching the V-0 level, and the flame retardant performance was significantly improved. The results also showed that there was a significant synergistic effect between IFR and O-SDS-LDHs, which could improve the thermal stability and graphitization degree of PP nanocomposites. In addition, the peak heat release rate, total heat release, and total smoke production of the PP/IFR/O-SDS-LDHs system were 177 kW/m2, 101 MJ/m2, and 15.4 m2, respectively, which were 82.2%, 51.0%, and 23.0% lower than those of pure PP, respectively. These improvements could be attributed to the presence of dense and continuous char layer formed by the synergistic effect.
Keywords:composites  nanoparticles  nanowires and nanocrystals  synthesis and processing techniques  thermal properties  thermogravimetric analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号