首页 | 本学科首页   官方微博 | 高级检索  
     


High pressure semibatch emulsion and miniemulsion copolymerization of vinyl acetate and ethylene
Authors:Manu Narayanan  Kyu Yong Choi
Affiliation:Department of Chemical and Biomolecular Engineering, University of Maryland, Maryland, College Park
Abstract:This study presents the experimental study of semibatch emulsion and miniemulsion copolymerization of vinyl acetate (VAc) and ethylene to vinyl acetate-ethylene (VAE) copolymer at 60°C and 80–300 psig. In the miniemulsion copolymerization, a water-soluble initiator (K2S2O8) is used and VAc miniemulsion is prepared in presence of surfactant and cosurfactant using a sonicator or a high-shear homogenizer. Then, ethylene gas is supplied to the reactor at constant partial pressure. In a miniemulsion process, the mass transfer limitations of VAc from monomer droplets to the aqueous phase, and to micelles or polymer latex particles that are present in conventional macro-emulsion polymerization can be eliminated and the transfer of ethylene dissolved in the aqueous phase to the miniemulsion droplets is the major ethylene transport process for the polymerization. The experimental data show that the amount of ethylene incorporation into the copolymer is higher in miniemulsion polymerization than in emulsion polymerization. The ethylene pressure has been found to have a strong impact on the ethylene incorporation into the copolymer phase in both emulsion and miniemulsion copolymerizations but the increase is more pronounced in miniemulsion case. The VAE copolymer latex particles prepared by miniemulsion polymerization exhibited higher storage stability than those prepared by macro-emulsion polymerization.
Keywords:addition polymerization  copolymers  emulsion polymerization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号