首页 | 本学科首页   官方微博 | 高级检索  
     

分裂-合并竞争学习的研究
引用本文:安成万,张永谦,谭民. 分裂-合并竞争学习的研究[J]. 控制与决策, 2005, 20(11): 1229-1234
作者姓名:安成万  张永谦  谭民
作者单位:中国科学院,自动化研究所,北京,100080;国家电网公司,山西分公司,太原,030001;中国科学院,自动化研究所,北京,100080
基金项目:国家863计划项目(2F03H03,2F03H06).
摘    要:针对竞争学习在给定的输出节点数目少于实际类数目时的学习结果会在几类数据之间振荡的问题,提出了MPTOC策略以及基于此策略的分裂一合并竞争学习算法.在假设数据集中的数据对其相应节点产生大小等于二者距离“吸引力”的基础上,算法通过计算网络中获胜节点在不同方向的“吸引力合力”分布,间接描述该节点附近数据的分布情况;采用高维空间模糊熵的方法确定该节点主要的“合力”方向,并将该节点在这几个方向上进行分裂一合并学习,从而实现MPTOC策略.通过对二维随机分布数据的实验结果验证了所提出算法的正确性和有效性.

关 键 词:竞争学习  分裂-合并竞争学习  MPTOC模糊熵
文章编号:1001-0920(2005)11-1229-06
收稿时间:2004-10-27
修稿时间:2005-03-10

Research on Splitting-merging Competitive Learning
AN Cheng-wan,ZHANG Yong-qian,TAN Min. Research on Splitting-merging Competitive Learning[J]. Control and Decision, 2005, 20(11): 1229-1234
Authors:AN Cheng-wan  ZHANG Yong-qian  TAN Min
Affiliation:1. Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China; 2. Shanxi Electrical Power Company, SG, Taiyuan 030001, China
Abstract:An MPTOC strategy is presented,which guarantees each cluster has an output unit at least during learning.The concept of "attractive force" in mechanics is adopted to describe the relation between a unit and its corresponding data,which equal to their Euclid distance.Based on MPTOC splitting-merging competitive learning the distribution of data around their winning unit is estimatea indirectly through computing the unit attractive forces.And the unit splitting directions are assigned through method of fuzzy entropy in high dimension space.Then the unit is split and learned along these directions.To avoid over-segmentation of input dataset,the results of splitting-learning are merged with the help of their means and variances.Experiments in 2D space validate the proposed algorithm.
Keywords:Competitive learning  Splitting-merging competitive learning(SMCL)  MPTOC  Fuzzy entropy
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号