首页 | 本学科首页   官方微博 | 高级检索  
     


Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications
Authors:Lav R KhotAuthor VitaeSuranjan PanigrahiAuthor Vitae  Dongqing LinAuthor Vitae
Affiliation:Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108, USA
Abstract:In this study, the regioregular poly (3-hexyl thiophene) (rr-P3HT) based piezoelectric sensors were developed and evaluated to detect alcoholic volatile organic compounds (VOCs) associated with spoiled and Salmonella typhimurium contaminated packaged beef headspace. The drop coating technique was used to deposit thin films of rr-P3HT on both the sides of quartz crystal microbalance (QCM) electrode. The QCM polymer sensors were found to provide repeatable and reproducible sensor response to alcohol VOCs with a fast recovery (<2 min) at room temperature (25 °C). The principal component analysis on the sensors sensitivities was performed to discriminate the sensed alcohol VOCs, namely: 3-methyl-1-butanol from 1-hexanol. The QCM polymer sensors demonstrated selective response to low concentration of 3-methyl-1-butanol (average estimated lowest detection limit (LDL): 4.35 ppm) and to 1-hexanol (average estimated LDL: 3.20 ppm). The 30 days storage study performed on QCM sensors showed identical sensitivity responses for sensing 3-methyl-1-butanol and 1-hexanol at low concentrations.
Keywords:Food safety  Salmonella contamination  Regioregular polythiophene  Piezoelectric sensor  Volatile organic compounds
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号