首页 | 本学科首页   官方微博 | 高级检索  
     


Breakdown fields and conduction mechanisms in thin Ta2O5 layers on Si for high density DRAMs
Authors:E Atanassova  A Paskaleva
Affiliation:Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria
Abstract:The conduction mechanisms and the microstructure of rf sputtered Ta2O5 on Si, before and after oxygen annealing at high temperatures (873, 1123 K; 30 min) have been investigated. The as-deposited and annealed at 873 K layers are amorphous whereas crystalline Ta2O5 (orthorhombic β-Ta2O5 phase) was obtained after O2 treatment at 1123 K. The results (electrical, X-ray diffraction, transmission electron microscopy) reveal the formation of an interfacial ultrathin SiO2 layer under all technological regimes used. The higher (493 K) substrate temperature during deposition stimulates the formation of amorphous rather than crystalline SiO2. It is found that the oxygen heating significantly reduces the oxide charge (Qf<1010 cm−2) and improves the breakdown characteristics (the effect is more pronounced for the higher annealing temperature). It is accompanied by an increase of the effective dielectric constant (up to 37 after 1123 K treatment). It is established that the influence of the oxygen treatment on the leakage current is different depending on the film thickness, namely: a beneficial effect for the thinner and a deterioration of leakage characteristics for thicker (80 nm) films. A leakage current density as low as 10−7 A/cm2 at 1 MV/cm applied field for 26 nm annealed layers has been obtained. The current reduction is considered to be due to a removal by annealing of certain structural nonperfections present in the initial layers. Generally, the results are discussed in terms of simultaneous action of two opposite and competing processes taking place at high temperatures––a real annealing of defects and an appearance of a crystal phase and/or a neutral traps generation. The contribution of the neutral traps also is involved to explain the observed weaker charge trapping in the as-fabricated films compared to the annealed ones.The conduction mechanism of the as-deposited films is found to be of Poole–Frenkel (PF) type for a wide range of applied fields. A change of the conduction mechanism for the annealed films at medium fields (0.8–1.3 MV/cm) is established. This transition from PF process to the Schottky emission limited current is explained with an annealing of bulk traps (oxygen vacancies and nonperfect bonds). It is concluded that the dominant conduction mechanism in the intermediate fields can be effectively controlled by appropriate technological steps.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号