首页 | 本学科首页   官方微博 | 高级检索  
     


Single-particle mass spectrometry of polystyrene microspheres and diamond nanocrystals.
Authors:Y Cai  W P Peng  S J Kuo  Y T Lee  H C Chang
Affiliation:Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
Abstract:High-resolution mass spectra of single submicrometer-sized particles are obtained using an electrospray ionization source in combination with an audio frequency quadrupole ion-trap mass spectrometer. Distinct from conventional methods, light scattering from a continuous Ar-ion laser is detected for particles ejected out of the ion trap. Typically, 10 particles are being trapped and interrogated in each measurement. With the audio frequency ion trap operated in a mass-selective instability mode, analysis of the particles reveals that they all differ in mass-to-charge ratio (m/z), and the individual peak in the observed mass spectrum is essentially derived from one single particle. A histogram of the spectra acquired in 10(2) repetitions of the experiment is equivalent to the single spectrum that would be observed when an ion ensemble of 10(3) particles is analyzed simultaneously using the single-particle mass spectrometer (SPMS). To calibrate such single-particle mass spectra, secular frequencies of the oscillatory motions of the individual particle within the trap are measured, and the trap parameter qz at the point of ejection is determined. A mass resolution exceeding 10(4) can readily be achieved in the absence of ion ensemble effect. We demonstrate in this work that the SPMS not only allows investigations of monodisperse polystyrene microspheres, but also is capable of detecting diamond nanoparticles with a nominal diameter of 100 nm, as well.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号