Reduced chemically modified graphene oxide for supercapacitor electrode |
| |
Authors: | Balasubramaniyan Rajagopalan Jin Suk Chung |
| |
Affiliation: | 1.School of Chemical Engineering, University of Ulsan, 93 Daehakro, Namgu, Ulsan 680-749, Republic of Korea |
| |
Abstract: | An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g-1 at 0.2 A g-1 in 2 M H2SO4 compared to a value of 141 F g-1 for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode. |
| |
Keywords: | Graphene oxide Chemical reduction Active material Supercapacitor |
|
|