首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation of Sn37Pb and Sn3.5Ag0.5Cu solder joints between Au/Ni (P)/Cu pads stressed with moderate current density
Authors:B Y Wu  H W Zhong  Y C Chan  M O Alam
Affiliation:(1) Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
Abstract:Sn37Pb (SP) and Sn3.5Ag0.5Cu (SAC) ball grid array (BGA) solder joints between Au/Ni (P)/Cu pads were stressed with a moderate current density of 6.0 × 102 A/cm2 at an ambient temperature of 125°C up to 600 h. The solder joint reliability was evaluated in terms of temperature measurement, microstructural analysis and mechanical strength test. It was confirmed that no obvious electromigration occurred with this moderate current density. However, the local temperature of solder joints rose considerably due to massive Joule heating, which degraded the solder joint reliability seriously. Phase coarsening was observed for both solders and it was particularly apparent in the SP solder joints. Compared to the SP, the SAC was found to be more reactive and hence a thicker intermetallic compound (IMC) was developed during the current stressing. Nevertheless, the IMC thickening was not as remarkable as expected with current stressing at high temperature. It exhibited a sub-parabolic growth manner that was mainly controlled by grain boundary diffusion. However, a sufficiently thick IMC layer initially formed during reflow soldering and the low diffusivity of the Ni atoms retarded the growth. The shear strength of the solder joints was found to decrease severely with the current stressing time. This degradation was attributed to the large stresses arising from localized thermal mismatch, phase coarsening, volume shrinkage of IMC evolution, Ni–P layer crystallization and the pad cracking during current stressing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号