首页 | 本学科首页   官方微博 | 高级检索  
     

基于微分算子的Eno-haar小波变换及其应用
引用本文:宋锦萍, 杨晓艺, 侯玉华. 基于微分算子的Eno-haar小波变换及其应用[J]. 电子与信息学报, 2004, 26(6): 940-944.
作者姓名:宋锦萍  杨晓艺  侯玉华
作者单位:河南大学数学与信息科学学院,开封,475001;河南大学数学与信息科学学院,开封,475001;河南大学数学与信息科学学院,开封,475001
基金项目:河南省自然科学基金(2003110004)、河南省高校青年骨干教师基金(G2002016)、河南大学科研基金(xK02069)资助课题
摘    要:该文首先引入微分算子并结合Haar小波的特点,提出了一种遗传性算法,用于2D信号奇异性检测。其次,将该算法与Eno-haar(Essentially non-oscillatory-haar)小波相结合,得到了一种基于微分算子的Eno-haar小波变换算法,并通过仿真实验说明了其在图像压缩中的可行性和有效性。

关 键 词:Eno-haar小波变换  微分算子  信号奇异性检测  图像压缩
文章编号:1009-5896(2004)06-0940-05
收稿时间:2003-01-28
修稿时间:2003-01-28

The Eno-haar Wavelet Transforms Based on Differential Operators and Its Application
Song Jin-ping, Yang Xiao-yi, Hou Yu-hua. The Eno-haar Wavelet Transforms Based on Differential Operators and Its Application[J]. Journal of Electronics & Information Technology, 2004, 26(6): 940-944.
Authors:Song Jin-ping  Yang Xiao-yi  Hou Yu-hua
Affiliation:College of Mathematics and Information Science, Henan University, Kaifeng 475001, China
Abstract:In this paper, the differential operators are introduced firstly. Then based on the characteristics of Haar wavelet transforms and the differential operators, a transmissibility algorithm is proposed and applied to the singularity measuring of 2D signal. Secondly, a new algorithm called the Eno-haar (Essentially non-oscillatory-haar) wavelet transforms algorithm based on the differential operators is presented. And it is proved by experiments that this algorithm is effective and feasible to image compression.
Keywords:Eno-haar wavelet transforms  Differential operators  the signal')"  >Singularity measuring of
the signal
  Image compression
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号