首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Copper Coating on the Crystalline Structure of Fine Barium Titanate Particles
Authors:Xinghua Liu  Wan Y. Shih  Wei-Heng Shih
Affiliation:Department of Materials Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Abstract:We have investigated the effect of a metal coating—copper—on the tetragonal structure of fine barium titanate (BaTiO3) particles. The BaTiO3 particles were synthesized by a sol-gel method and heat treated at temperatures >900°C for various amounts of time before coating. The copper coating was achieved by an electroless coating technique. The transmission electron microscopy micrographs revealed that the coated powder contained fine BaTiO3 particles that were embedded in copper patches. The X-ray diffractometry patterns showed that the copper coating increased the c/a ratio of the fine BaTiO3 particles. For powders that were heat treated at 900°C for 10 h and were initially cubic, the copper coating changed the c/a ratio, from 1 to 1.0034. For powders that were calcined at 900°C for 20 h and were initially tetragonal, the copper coating further enhanced the c/a ratio, from 1.0028 to 1.0043. When the copper-coated BaTiO3 particles were oxidized, the c/a ratio was reduced to a value that was approximately equal to or below that of the uncoated powders. A conductive coating can eliminate the depolarization energy of an insulating polar particle. The fact that the copper coating promoted the polar tetragonal phase but the nonconductive copper-oxide coating did not was consistent with the interpretation that the presence of the cubic phase (nonpolar) in small BaTiO3 particles was caused by the depolarization effect.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号