首页 | 本学科首页   官方微博 | 高级检索  
     


Role of Boundary Strengthening on Prevention of Type IV Failure in High Cr Ferritic Heat-Resistant Steels
Authors:Yuan Liu  Susumu Tsukamoto  Kota Sawada  Fujio Abe
Affiliation:1. Structural Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
2. Materials Reliability Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan
Abstract:Microstructure evolution of newly developed 9Cr-3W-3Co-V, Nb steel with boron addition (B steel) has been analyzed during HAZ thermal cycle at the peak temperature of around Ac3 (Ac3 HAZ) and post-weld heat treatment (PWHT) to elucidate the prevention mechanism of type IV failure by boron addition. It was found that enhancement of the boundary strengthening by precipitates is the main reason for prevention of type IV failure by boron addition. In B steel HAZ, original austenite is reconstituted through martensitic α to γ reverse transformation during the heating and original martensite is reconstituted through martensitic transformation during cooling of the Ac3 HAZ thermal cycle. This process allows M23C6 carbides to precipitate at the prior austenite grain (PAG) and block boundaries during PWHT even if the chemical segregation of carbide forming elements exists. The effect of boundary strengthening on the creep property has also been investigated. Microstructure evolution during creep was compared among Gr.92 with different Ac3 HAZ microstructures prepared by three kinds of heat treatments and B steel. The results revealed that both the boundary length and kernel average misorientation value decreased in all samples during creep. However, this process occurred very rapidly in Ac3 HAZ simulated Gr.92, whereas it was significantly retarded in the other samples with sufficient boundary strengthening by precipitates. This result confirms that the precipitates formed at PAG and block boundaries play the most important role to stabilize the microstructure of Ac3 HAZ simulated samples during creep and prolong the creep life.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号