首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of Magnetohydrodynamic Multiphase Flow Phenomena and Interface Fluctuation in Aluminum Electrolytic Cell with Innovative Cathode
Authors:Qiang Wang  Baokuan Li  Zhu He  Naixiang Feng
Affiliation:1. School of Materials and Metallurgy, Northeastern University, Wenhua Road 3-11, Heping District, Shenyang, 110819, People’s Republic of China
2. Key Laboratory for Ferrous Metallurgy and Resources Utilization, Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, People’s Republic of China
Abstract:A three-dimensional (3D) transient mathematical model has been developed to understand the effect of innovative cathode on molten cryolite (bath)/molten aluminum (metal) interface fluctuation as well as energy-saving mechanism in aluminum electrolytic cell with innovative cathode. Based on the finite element method, the steady charge conservation law, Ohm’s law, and steady-state Maxwell’s equations were solved in order to investigate electric current field, magnetic field, and electromagnetic force (EMF) field. Then, an inhomogeneous multiphase flow model of three phases including bath, metal, and gas bubbles, based on the finite volume method, was implemented using the Euler/Euler approach to investigate melt motion and bath/metal interface fluctuation. EMF was incorporated into the momentum equations of bath and metal as a source term. Additionally, the interphase drag force was employed to consider different phase interactions. Thus, present work owns three main features: (1) magnetohydrodynamic multiphase flow are demonstrated in detail both in aluminum electrolytic cell with traditional cathode and innovative cathode; (2) bath/metal interface fluctuation due to different driving forces of gas bubbles, EMF, and the combined effect of the two driving forces is investigated, which is critical to the energy saving; and (3) the effect of innovative cathode on melt flow and motion of gas bubbles. A good agreement between the predicated results and measurement is obtained. The velocity difference leading to the melt oscillation decreases due to more uniform flow field. The average velocity of metal in the cell with innovative cathode decreases by approximately 33.98 pct. The gas bubbles in the cell with innovative cathode releases more quickly under the effect of protrusion on the cathode. The average bubble release frequency increases from 1.1 to 1.98 Hz. Hence, the voltage drop caused by gas bubbles would decrease significantly. In addition, the two large vortices are broken into many small vortices due to the protrusion. The final disappearance of the small vortices as a result of viscous dissipation is conducive to the suppression of bath/metal interface fluctuation. The average interface amplitude in the cell with innovative cathode reduces to 75.95 pct of that in the cell with traditional cathode.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号