首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络与循环谱图的调制识别方法
引用本文:林心桐,张 琳,吴志强,姜 军. 基于卷积神经网络与循环谱图的调制识别方法[J]. 太赫兹科学与电子信息学报, 2021, 19(4): 617-622
作者姓名:林心桐  张 琳  吴志强  姜 军
作者单位:1.College of Information Sciences and Technology,Tibet University,Lhasa Tibet 850000,China;2.School of Electronic Information and Engineering,Sun Yat-sen University,Guangzhou Guangdong 510006,China
基金项目:西藏自治区科技计划项目-重点研发与转化计划资助项目(XZ201901-GB-16);广东省自然科学基金资助项目(2020A1515010703)
摘    要:为提高调制分类识别精确度,降低计算复杂度,提出了一种基于卷积神经网络(CNN)与红绿蓝(RGB)循环谱二维图的智能调制识别方法。基于循环谱特征可识别调制类型的机理,为了降低计算复杂度,将三维的循环谱转换为二维平面的RGB循环谱图,并将其用于构建数据集;将一种计算复杂度较低的CNN作为调制类型分类识别器。仿真结果表明,所提出的智能调制识别方法能够以较低的计算复杂度,获得更高的分类精确度。

关 键 词:智能调制识别;卷积神经网络;循环谱二维图;深度学习
收稿时间:2021-03-24
修稿时间:2021-05-10

Modulation recognition method based on convolutional neural network and cyclic spectrum images
LIN Xintong,ZHANG Lin,WU Zhiqiang,JIANG Jun. Modulation recognition method based on convolutional neural network and cyclic spectrum images[J]. Journal of Terahertz Science and Electronic Information Technology, 2021, 19(4): 617-622
Authors:LIN Xintong  ZHANG Lin  WU Zhiqiang  JIANG Jun
Abstract:An intelligent modulation recognition method based on the Convolutional Neural Network(CNN) and two-dimensional Red-Green-Blue(RGB) cyclic spectrum images is proposed in order to improve the modulation recognition accuracy and reduce the computational complexity. The cyclic spectrum can be employed to identify the modulation type. The three-dimensional cyclic spectra are converted to two-dimensional RGB cyclic spectra to reduce the computational complexity, which are then taken to build the data set. Moreover, a CNN based modulation classifier with low computational complexity is proposed. Simulation results show that the proposed intelligent modulation recognition algorithm can achieve higher classification accuracy with lower computational complexity.
Keywords:
点击此处可从《太赫兹科学与电子信息学报》浏览原始摘要信息
点击此处可从《太赫兹科学与电子信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号