首页 | 本学科首页   官方微博 | 高级检索  
     

考虑宏观政策的能源需求组合预测模型
引用本文:黄欣,吴杰康,李红玲,李逸欣,郑敏嘉,李猛,吴伟杰,张伊宁. 考虑宏观政策的能源需求组合预测模型[J]. 四川电力技术, 2021, 44(1): 62-69
作者姓名:黄欣  吴杰康  李红玲  李逸欣  郑敏嘉  李猛  吴伟杰  张伊宁
作者单位:广东电网规划研究中心,广东 广州 510000;广东工业大学自动化学院,广东 广州 510006
基金项目:广东省科技计划项目项目(2020A050515003);广州市科技计划项目项目(202002030463);广东电网有限责任公司科技计划项目(037700KK52190004)。
摘    要:针对目前能源需求预测考虑影响因素单一、忽视宏观政策影响因素、预测精度不足等问题,提出了一种融合灰色关联度分析和BP神经网络的能源需求组合预测方法.首先,根据宏观政策的针对性和方向性进行领域划分,分析各领域的指标;其次,利用灰色关联度分析法对分析后的各领域宏观政策初始指标进行关联度计算、排序、筛选;最后,将筛选出的初始指...

关 键 词:能源需求预测  宏观政策  灰色关联度分析  BP神经网络  组合预测

Combination Forecasting Model for Energy Demand Considering Micro Policy
Huang Xin,Wu Jiekang,Li Hongling,Li Yixin,Zheng Minji,Li Meng,Wu Weijie,Zhang Yining. Combination Forecasting Model for Energy Demand Considering Micro Policy[J]. Sichuan Electric Power Technology, 2021, 44(1): 62-69
Authors:Huang Xin  Wu Jiekang  Li Hongling  Li Yixin  Zheng Minji  Li Meng  Wu Weijie  Zhang Yining
Affiliation:Guangdong Power Grid Planning Research Center;School of Automation, Guangdong University of Technology
Abstract:Aiming at the current problems of considering influence factors of energy demand forecasting in a single way, ignoring influence factors of macro policy and lacking in forecasting accuracy, a combined energy demand forecasting method together with grey correlation analysis and BP neural network is proposed. Firstly, the fields are divided according to the pertinence and direction of the macro policy, and then the indicators are analyzed in each field. Secondly, the grey correlation analysis method is used to calculate, sort and filter the initial indicators of the macro policy after the analysis. Finally, the selected initial indicators are used as the input of BP neural network, the neural network tools are used to achieve the purpose of energy demand forecasting, and a case simulation is performed to analyze the results of energy demand combination forecasting. The example results show that the proposed energy demand combination forecasting method focuses on the impact of macro policies, which effectively improves the forecasting accuracy and is practical and reliable.
Keywords:energy demand forecasting   macro policy   grey correlation analysis   BP neural network   combination forecasting
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《四川电力技术》浏览原始摘要信息
点击此处可从《四川电力技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号