首页 | 本学科首页   官方微博 | 高级检索  
     


Defect pattern recognition on wafers using convolutional neural networks
Authors:Rui Wang  Nan Chen
Affiliation:Department of Industrial Systems Engineering & Management, National University of Singapore, Singapore
Abstract:In semiconductor manufacturing, wafer testing is performed to ensure the performance of each product after wafer fabrication. The wafer map is used to visualize the color-coded wafer test results based on the locations. The defects on the wafer map may be randomly distributed or form clustered patterns. The various clustered defect patterns are usually caused by assignable faults. The identification of the patterns is thus important to provide valuable hints for the root causes diagnosis. Solving the problems helps improve the manufacturing processes and reduce costs. In this study, we present a novel convolutional neural network (CNN)–based method to automatically recognize the defect pattern on wafer maps. Our method uses polar mapping before the training of CNN to transform the circular wafer map into a matrix, which can be processed within CNN architecture. This procedure also reduces the input size and solves variations in wafer sizes and die sizes. To eliminate the effects of rotation, we apply data augmentation in the training of CNN. Experiments using the real-world dataset prove the effectiveness and superiority of our method.
Keywords:convolutional neural network  pattern recognition  polar mapping  semiconductor manufacturing  wafer map
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号