首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical Vapor Infiltration of TiB2-Matrix Composites
Authors:Theodore M Besmann  James H Miller  Kevin M Cooley  Richard A Lowden  Thomas L Starr
Affiliation:Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessce 37831–6063;Georgia Tech Research Institute, Atlanta, Georgia 30337
Abstract:The efficiency of the Hall–Heroult electrolytic reduction of aluminum can be substantially improved by the use of a TiB2 cathode. The use of TiB2 components, however, has been hampered by the brittle nature of the material and the grain boundary attack of sintering-aid phases by molten aluminum. In the current work, TiB2 is toughened through the use of reinforcing fibers, with chemical vapor infiltration used to produce the TiB2 matrix. In early efforts it was observed that the formation of TiB2 from chloride precursors at fabrication temperatures below 900–1000°C may have allowed the retention of destructive levels of chlorine. At higher fabrication temperatures (>1000°C), using appropriate infiltration conditions as determined from the use of a process model, TiB2/THORNEL P-25 fiber composites have been fabricated in 20 h. The improved composite material has been demonstrated to be stable in molten aluminum in short-duration (24 h) tests.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号