首页 | 本学科首页   官方微博 | 高级检索  
     


An Analysis of an Electronically Tunable N-GaAs Distributed Oscillator
Abstract:The effective Schottky-barrier height of a contact to n-GaAs can be designed arbitraily by interposing a thin, highly doped layer between a metal and n-GaAs and by controlling the thickness optimally. An n-GaAs diode with a Schottky-barrier cathode exhibits various space-charge modes depending on the barrier height. A traveling dipole domain mode in an n-GaAs diode changes into a cathode trapped domain mode as the injection current at the cathode decreases. It has been shown that an n-GaAs diode, which operates in a cathode trapped domain mode, exhibits a negative conductance over a fairly wide frequency range. A super semiconductor. wide-band electronically tunable distributed oscillator can he achieved by inserting an n-GaAs diode with a suitably designed Schottky-barrier cathode between resonant microstriplines in place of conventional dielectric material. It has been shown that the frequency of the distributed oscillator would be electronically tunable over a fairly wide frequency range from 9 to 26 GHz.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号