首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity
Authors:Zhu  Xiaodong  Zhou  Qin  Xia  Yangwen  Wang  Juan  Chen  Hongjin  Xu  Qiao  Liu  Jiawei  Feng  Wei  Chen  Shanhua
Affiliation:1.College of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
;2.College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
;
Abstract:

Pure TiO2 and Cu–doped TiO2 containing different amounts of copper ions with anatase/rutile/brookite triphasic structure were successfully synthesized through a simple hydrothermal method. The obtained samples were characterized by X–ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), X–ray photoelectron spectroscopy (XPS), UV?vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL) and Brunauer–Emmett–Teller surface area analyze (BET). Both pure and Cu–doped TiO2 show relatively high photocatalytic activity owing to their considerable surface areas. Moreover, the three–phase coexisting structure and the conversion between Cu2+ and Cu+ ions facilitate the separation of photogenerated electrons and holes, which is favorable for photocatalytic performance. 1%Cu–TiO2 exhibits the highest photocatalytic activity and the degradation degree of rhodamine B (RhB) reaches 93.5% after 30 min, which is higher than that of monophasic/biphasic 1%Cu–TiO2. ·O2? radical is the main active species, and h+ and ·OH species are subsidiary in the degradation process.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号