首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of infill on hydrogen tank temperature distribution during fast fill
Authors:Hangyue Li  Zewei Lyu  Yaodong Liu  Minfang Han  He Li
Affiliation:1. State Key Laboratory of Control and Simulation of Power Systems and Generation Equipment, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, PR China;2. Zhengzhou Yutong Bus Co Ltd, Zhengzhou, Henan, 450061, China
Abstract:The temperature rise of hydrogen tank during fast fill poses challenge on the safety of hydrogen-powered vehicles. Researchers have been continuously looking for methods to mitigate the challenge of overheating. In this paper, we proposed an innovative solution by introducing porous infill in gas tanks to slow down gas-to-wall heat transfer. The porosity of the infill is no less than 97% to maintain the volume capacity of gas tanks. To evaluate the impact of infill heat capacity, we modelled the filling process with a lumped-parameter model and obtained various time-independent temperature evolution curves. Then, we set up a 2D and a 3D finite volume model and investigated the spatial distribution of temperature rise. Four cases with different infill properties were simulated and compared. At the end of the fast fill, the infill resulted in lower tank wall temperature at the cost of higher gas temperature. The combined effect of internal gas temperature and gas-phase effective thermal conductivity largely determines the final temperature distribution. The presence of infill effectively slowed down convective heat transfer, yet overly resistive porous infill may overly slow down the gas flow and result in thermal stratification. Further studies on infill design can be done to seek more effective solutions.
Keywords:Hydrogen storage safety  Fast fill  Infill  Thermal simulation  Numerical
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号