首页 | 本学科首页   官方微博 | 高级检索  
     


On-board methanol catalytic reforming for hydrogen Production-A review
Authors:Haozhen Li  Chao Ma  Xinyao Zou  Ang Li  Zhen Huang  Lei Zhu
Affiliation:MOE Key Laboratory for Power Machinery and Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract:Hydrogen has become a versatile and clean alternative to meet increasingly urgent energy demands since its high heating value and renewability. However, considering the hazards of hydrogen storage and transport, in-situ production processes are drawing more attention. Among all the hydrogen carriers, methanol has become one of the research focuses due to its high H/C ratio, flexibility and sustainability. Regarded as the core of hydrogen supply system, catalysts with higher activity, selectivity and stability are continuously developed for improved efficiency. In this review, two groups of catalysts were investigated namely copper-based and group VIII metal-based catalysts. Not only macro indicators such as feedstock conversion and product selectivity, but also micro interaction and reaction mechanism were elaborated, with respect to the effects of promoters, supports, synthesis methods and binary metal components. Notably, several reaction pathways and catalysts deactivation mechanisms were suggested based on this series of inspection of the structure-reactivity relationship, along with a general perception that large surface area, well dispersed metals, small particle size and synergy effects significantly improve the catalytic performance. Accordingly, a novel concept of single-atom catalysts (SACs) was introduced aimed at efficient hydrogen production under more moderate conditions, by combining the advantages of heterogeneous and homogeneous catalysis. Additionally, an efficient reforming process is required by properly regulating the feed flow and heat flow through a coupled system. Conclusively, a thorough supply and demand network of hydrogen based on methanol was presented, giving an overview for on-board applications of hydrogen energy.
Keywords:Methanol reforming  Hydrogen production  On-board  Catalysts  SACs
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号