首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative performance of commercial polymeric membranes in the recovery of industrial hydrogen waste gas streams
Authors:María Yáñez  Alfredo Ortiz  Daniel Gorri  Inmaculada Ortiz
Affiliation:Chemical and Biomolecular Engineering Department, ETSIIyT, University of Cantabria, Av. Los Castros S/n, 39005, Santander, Spain
Abstract:The application of membrane separation processes to industrial hydrogen-rich waste gases promotes the efficient recovery of this clean fuel. The first step to address and overcome this waste of resources is to assess the real performance of commercially available polymeric membranes for hydrogen separation in terms of hydrogen purity that meets the quality standards to be used in hydrogen-based applications. Therefore, this work makes a comparison of the performance of commercial flat hydrogen-selective membranes based on non-porous polymeric materials through the experimental assessment in a lab-scale set up that contains a gas permeation cell with the aim of recovering hydrogen from the most suitable multicomponent waste gaseous streams. To assess the mixed-gas permeation performance, the influence of the feed gas composition, temperature and pressure was examined. The results of experimental tests indicated that there is a strong dependency of H2 permeability on CO2 concentration, that induces a decay of H2/CO2 selectivity in mixed-gas experiments for the membranes under study. Accordingly, the permeability-selectivity trade-off in the state-of-the-art membranes defines the balance between H2 recovery and the product purity. Finally, it is worth noting that although H2 purities obtained are higher than 98% vol. H2 for APG and COG mixtures, which may indeed be used as a commodity chemical in many industrial processes, they are still far from fuel cell requirements.
Keywords:Hydrogen separation  Industrial surplus hydrogen  Polymeric membranes  Mixed-gas permeation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号