首页 | 本学科首页   官方微博 | 高级检索  
     


A predictive modeling tool for damage analysis and design of hydrogen storage composite pressure vessels
Authors:Ba Nghiep Nguyen  Hee Seok Roh  Daniel R. Merkel  Kevin L. Simmons
Affiliation:1. Pacific Northwest National Laboratory, Richland, WA 99354, USA;2. Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
Abstract:In this paper, a predictive modeling tool is developed for damage analysis and design of hydrogen (H2) storage composite pressure vessels. It integrates micromechanics of matrix cracking into a continuum damage mechanics (CDM) description for damage evolution, and three-dimensional (3D) finite element (FE) modeling of the vessel structural response. At the scale of the composite layer (mesoscale), the temperature-dependent stiffness reduction law in terms of the damage variable for transverse matrix cracking is computed using an Eshelby-Mori-Tanaka approach (EMTA) for the initial composite thermoelastic properties and a self-consistent model for the stiffness reduction as a function of the damage variable. While transverse matrix cracking obeying a damage evolution relation can progressively evolve from an initiation to a saturation state, fiber failure is predicted by a micromechanical fiber rupture criterion that accounts for the fiber strength and matrix stress that can be computed within EMTA. The implementation of this integrated multiscale modeling model into a 3D FE formulation enables damage analysis and design of H2 storage composite pressure vessels. The developed tool is illustrated through 3D damage analyses of a cryogenically compressed H2 storage vessel model subjected to thermomechanical loadings to investigate effects of the helical layer fiber orientation and loading scenario on damage development, vessel integrity and burst pressure.
Keywords:Hydrogen storage pressure vessel  Micromechanics  Continuum damage mechanics  Transverse matrix cracking  Fiber rupture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号