首页 | 本学科首页   官方微博 | 高级检索  
     


Gasification of food waste in supercritical water: An innovative synthesis gas composition prediction model based on Artificial Neural Networks
Authors:Shribalaji Shenbagaraj  Pankaj Kumar Sharma  Amit Kumar Sharma  Geetanjali Raghav  Karthikeya Bharadwaj Kota  Veeramuthu Ashokkumar
Affiliation:1. School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India;2. Department of Mechanichal Engineering, School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India;3. Department of Chemistry and Biofuel Research Laboratory, Centre of Alternative and Renewable Energy, School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India;4. Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
Abstract:The present study intends to develop multi-layered feed-forward back-propagation algorithm based artificial neural network (FFBPNN) models to predict the synthesis gas (SG) compositions (H2, CH4, CO & CO2) and yields (mol/kg) for supercritical water gasification (SCWG) of food wastes. Such models are trained with Levenberg-Marquardt (L-M) algorithm, minimized using gradient descent approach and tested with real-time experimental datasets obtained from literature. Moreover, to determine an optimal form of the neural network for a typical non-catalytic SCWG process, a trial and error approach involving multiple combinations of transfer functions and neurons in the network layers is performed. The predicted values of SG compositions yield delivered by the FFBPNN models are in line with the experimental datasets converging to a mean squared error (MSE) value below 0.300 range and coefficient of determination (R2) above 98%. Best prediction accuracy is achieved for CO yield prediction characterized by a least MSE of 0.022 and highest train-test R2 of 0.9942–0.9939. The performance of the developed FFBPNN models can be arranged on the basis of MSE as (ann7)CO < (ann6)CH? < (ann5)H? < (ann8)CO? and on the basis of testing R2 as (ann7)CO > (ann6)CH? > (ann5)H? > (ann8)CO?.
Keywords:Food waste  Supercritical water gasification  Synthesis gas  Hydrogen  Artificial neural network  Prediction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号