首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of synthetic parameters on the enhanced photocatalytic properties of ZnO nanoparticles for the degradation of organic dyes: a green approach
Authors:Badma Priya  Dhananjayan  Thirumalai  Dhakshanamurthy  Asharani  Indira Viswambaran
Affiliation:1.Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 642 014, India
;2.Organic Synthesis and Nano Bio Laboratory, Department of Chemistry, Thiruvalluvar University, Vellore, 632 115, India
;
Abstract:

Herein, we report a green synthetic strategy using aqueous leaves extract of Actinodaphne madraspatna Bedd (AMB) for the synthesis of ZnO NPs. The physical shape, size, thermal stability, surface area, surface composition and chemical state, morphological and optical properties of the synthesized ZnO NPs are well characterized through UV–Visible diffuse reflectance spectroscopy (DRS UV), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis–differential thermal analysis (TGA–DTA), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and X-ray photon spectroscopy (XPS). FT-IR spectrum of ZnO NPs showed a characteristic peak at 416.62 cm?1. Optical studies of prepared ZnO NPs showed the bandgap values are reduced in the range of 3.05 to 2.96 eV. The XRD and TEM data revealed the synthesized ZnO NPs exist in wurtzite crystal structure with crystallite sizes of 18 nm to 68 nm range. The variation in bandgap, surface area and crystallite structure of ZnO NPs would be achieved by changing the experimental parameters. FESEM showed spherical-shaped structure. XPS result confirmed the atomic states of Zn and O. The green synthesized ZnO NPs were examined for the photocatalytic degradation of methylene blue (MB) and acid violet 17 (AV17) dyes under UV light and the rate constants ‘k’ was calculated. It is found that the green synthesized ZnO NPs with reduced bandgap showed enhanced photocatalytic activity with higher rate constant.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号